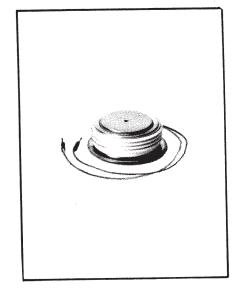

Fast Switching SCR T9GH__09


900A Avg. (1400 RMS) Up to 2000 Volts 60-100 μs

-						
Symbol	Inches		Millimeters			
0,111001	Min.	Min. Max.		Max.		
φD	2.850	2.900	72.39	73.66		
ϕD_1	1.845	1.855	46.86	47.12		
ϕD_2	2.560	2.640	65.02	67.06		
Н	1.030	1.070	26.16	27.18		
φJ	.135	.145	3.43	3.68		
J_1	.075	.090	1.91	2.29		
L	11.50	12.50	292.10	317.50		
N	.050		1.27			

Creep Distance—1.20 in. min. (30.48 mm). Strike Distance—.07 in. min. (17.78 mm). (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight—2 lb. (908 g).

1. Dimension "H" is a clamped dimension.

T9G Outline

Features:

- Midway, di/namic Gate Structure
- Hard Commutation Turn-Off
- Forward Blocking Capabilities to 2000V
- Low Switching Losses at High Frequency
- Soft Commutation (Feedback Diode) Testing Available

Applications:

- Induction Heating
- Transportation
- Inverters
- Crowbars

Ordering Information

Туре	Vol	tage	Cur	rent	Turr	1-off	Gate c	urrent	Lea	ıds
Code	VDRM and VRRM * (V)	Code	(A)	Code	tq usec	Code	lgt (ma)	Code	Case	Code
T9GH	600 800 1000 1200 1400 1500 1600 1700 1800 2000	06 08 10 12 14 15 16 17 18 20	900	09	60 70 80 100	2 C I K	300	2	T9G	DH

Example

Obtain optimum device performance for your application by selecting proper order code.

Type T9GH -ted at 900A average with VDRM = 1600V tq = 70 usec.

IGT = 300 ma, and standard 12 inch leads -- order as:

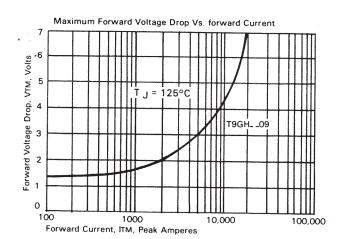
*for lower voltages consult factory

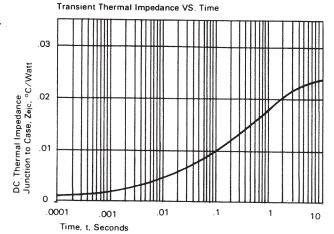
Туре	Voltage	Current	Turn Off	Gate Current	Leads	
T .9 G H	1 6	0 9	C	2	DH	J

900A Avg. (1400 RMS) Up to 2000 Volts 60-100 μs

Fast Switching SCR T9GH__09

Voltage												
Blocking State Maximums (T _J = 125°C)	Symbol						T		I		I	
Repetitive peak forward blocking voltage , V	V_{DRM}	600	800	1000	1200	1400	1500	1600	1700	1800	1900	2000
Repetitive peak reverse voltage, V Non-repetitive transient peak reverse voltage,	VRRM	600	800	1000	1200	1400	1500	1600	1700	1800	1900	2000
t ≤ 5.0 msec, V	[∨] RSM	700	900	1100	1300	1500	1600	1700	1800	1900	2000	2100
Forward leakage current, mA peak	IDRM	-					- 90					
Reverse leakage current, mA peak	RRM	-					 90 -					

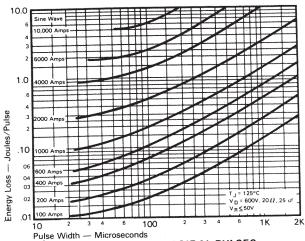

Current		
Conducting State Maximums $(T_J = 125^{\circ}C)$	Symbol	T9GH09
RMS forward current, A	T(rms) T(av) TSM TSM TSM 12t 12t	1400 900 13,000 9,750 8,000 700,000 90 x 10 ⁵
and $i_J = 25^{\circ}C$, V		


25°C)	Symbol	T9GH09	(T _J =25°C)	Symbol	Min	Тур	Max
ward current, A	T(rms) T(av) TSM TSM TSM TSM 2t 2t VTM	1400 900 13,000 9,750 8,000 700,000 90 x 10 ⁶ 2.25	Gate current to trigger at VD = 12V, mA. Gate voltage to trigger at VD = 12V, V. Non-triggering gate voltage, TJ = 125°C, and rated VDRM, V. Non-triggering Gate Current at VD = 12V, mA. Peak forward gate current, A. Peak reverse gate voltage, V. Peak gate power, Watts. Average gate power, Watts.	IGT VGT VGDM IGNT IGTM VGRM PGM		200 1.5	300 3.0 .15

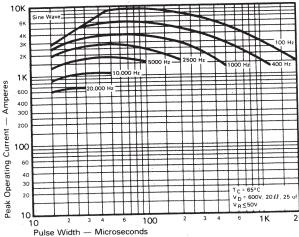
Gate

Switching			
(Tj=25°C)	Symbol		
HARD COMMUTATION: ①			
Maximum Turn-off time, IT = 1000A			
50V≤VR≤VRRM	1		
TJ = 125°C, di R/dt = 100A/usec			
reapplied dv/dt =	1		
200V/usec linear to 0.8 VDRM, usec	tq	60-100	
Typical Turn-On and Delay Time			
ITM = 1000A, tp = 450, usec	ton	3.0	
VD = 1100V, usec	td	1.5	
Minimum Critical dv/dt exponential	1		
to VDRM			
TJ = 125°C, V/usec ① ⑤	dv/dt	400	
Minimum di/dt @ non-repetitive,	ĺ		
① ④ € A/usec	di∕dt	1000	
Latching Current	-		
VD = 75V, mA	Тур	500	
Holding Current	Max IL	1000	
VD = 75V, ma	Typ I	300	
	Max ^{IH}	800	
Thermal and Mechanical	Symbol I Mi	in Tyn	г

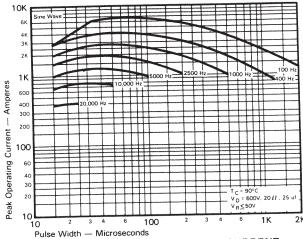
Thermal and Mechanical	Max''' Symbol	Min	800 Typ	Max
Oper, junction temp., °C	. Tj	-40		125
Storage temp., °C	. T _{sta}	40 40		150
Mounting force, Ib		5000		5500
Thermal resistance with double sided cooling				
Junction to case, °C/Watt		.006		.023


- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
 Per JEDEC RS-397, 5.2.2.1.

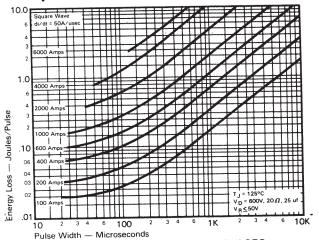
- With recommended gate drive.
 For different turn-off values or conditions, consult factory.
 Per JEDEC standard RS-397, 5.2.2.6.
- ① For operation with antiparallel diode, consult factory.


396

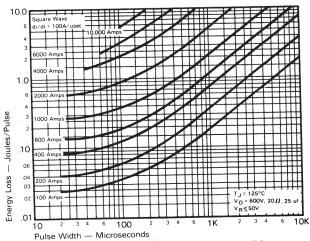
Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.


Sinusoidal Current Data

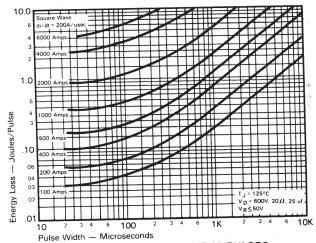
ENERGY PER PULSE FOR SINUSOIDAL PULSES



MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (TC = 65°C)

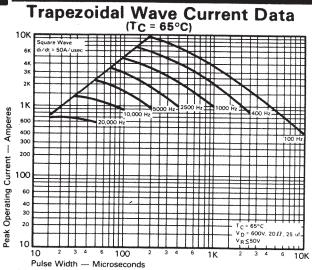


MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (TC = 90° C)

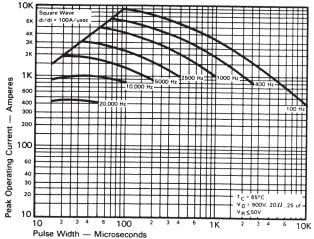

Trapezoidal Wave Current Data

ENERGY PER PULSE FOR TRAPEZOIDAL PULSES (di/dt = 50A/usec)

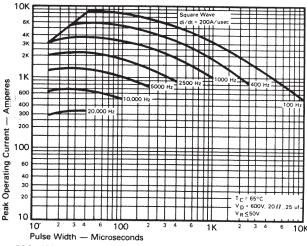
ENERGY PER PULSE FOR TRAPEZOIDAL PULSES (di/dt = 100A/usec)

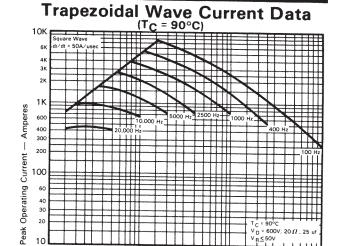


ENERGY PER PULSE FOR TRAPEZOIDAL PULSES (di/dt = 200A/usec)

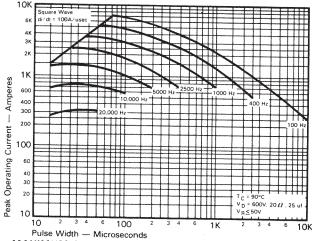

397

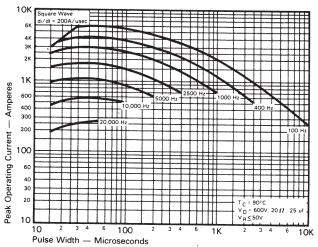
900A Avg. (1400 RMS) Up to 2000 Volts 60-100 μs


Fast Switching SCR T9GH__09


MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 50A/usec)

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 100A/usec)


MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT
398 vs. PULSE WIDTH (di/dt = 200A/usec)


Pulse Width — Microseconds

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT
vs. PULSE WIDTH (di/dt = 50A/usec)

100

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 100A/usec)

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 200A/usec)