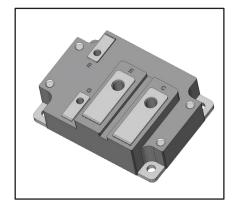


Single IGBT Module 600 Amperes/1700 Volts


Note: All electrical characteristics scaled from 600A module CM600DXL-34SA.

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
А	4.33	110.0
В	3.15	80.0
С	3.66±0.008	93.0±0.25
D	2.44±0.008	62.0±0.25
E	1.57	40.0
F	1.42 Max.	36.0 Max.
G	1.14	29.0
Н	1.00 Max.	25.5 Max.
J	0.89	22.5
K	0.93	23.5
L	0.83	21.0
М	0.63	16.0

Dimensions	Inches	Millimeters
N	0.69	17.5
Р	0.79	20.0
Q	0.51	13.0
R	0.43	11.0
S	0.43	11.0
T	0.35	9.0
U	M8 Metric	M8
V	0.16	4.0
W	0.256 Dia.	6.5 Dia.
Χ	M4 Metric	M4
Υ	0.24	6.0

Description:

Powerex IGBT Modules are designed for use in switching applications. Each module consists of one IGBT Transistor in a single configuration with a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Low Drive Power
- □ Low V_{CE(sat)}
- ☐ Discrete Super-Fast Recovery Free-Wheel Diode
- ☐ Isolated Baseplate for Easy Heat Sinking

Applications:

- ☐ AC Motor Control
- ☐ Motion/Servo Control
- □ UPS
- ☐ Welding Power Supplies
- ☐ Laser Power Supplies

QIS1760002 Single IGBT Module 600 Amperes/1700 Volts

Absolute Maximum Ratings, T_i = 25°C unless otherwise specified

Characteristics	Symbol	Rating	Units
Collector-Emitter Voltage (V _{GE} = 0V)	V _{CES}	1700	Volts
Gate-Emitter Voltage (V _{CE} = 0V)	V _{GES}	±20	Volts
Collector Current (DC, T _C = TBD°C)*2,*4	I _C	600	Amperes
Collector Current (Pulse, Repetitive)*3	I _{CRM}	1200	Amperes
Total Power Dissipation (T _C = 25°C)*2,*4	P _{tot}	5600	Watts
Emitter Current (T _C = TBD°C)*2,*4	le*1	600	Amperes
Emitter Current (Pulse, Repetitive)*3	I _{ERM} *1	1200	Amperes
Maximum Junction Temperature	T _{j(max)}	175	°C
Maximum Case Temperature*2	T _{C(max)}	125	°C
Operating Junction Temperature	$T_{j(op)}$	-40 to +150	°C
Storage Temperature	T _{stg}	-40 to +125	°C
Isolation Voltage (Terminals to Baseplate, RMS, f = 60Hz, AC 1 minute)	V _{ISO}	3500	Volts

^{*1} Represent ratings and characteristics of the anti-parallel, emitter-to-collector free wheeling diode (FWDi).

^{*2} Case temperature (T_C) and heatsink temperature (T_S) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. The heatsink thermal resistance should be measured just under the chips.

^{*3} Pulse width and repetition rate should be such that device junction temperature (T_j) does not exceed T_{i(max)} rating.

does not exceed T_{j(max)} rating.

*4 Junction temperature (T_j) should not increase beyond maximum junction temperature (T_{j(max)}) rating.

QIS1760002 Single IGBT Module 600 Amperes/1700 Volts

Electrical Characteristics, $T_j = 25$ °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Emitter Cutoff Current	I _{CES}	$V_{CE} = V_{CES}$, $V_{GE} = 0V$	_	_	2	mA
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0V	_	_	1.0	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	I _C = 60mA, V _{CE} = 10V	5.4	6.0	6.6	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 600A$, $V_{GE} = 15V$, $T_j = 25^{\circ}C^{*6}$	_	2.0	2.5	Volts
	•	$I_C = 600A$, $V_{GE} = 15V$, $T_j = 125^{\circ}C^{*6}$	_	2.2	_	Volts
	•	$I_C = 600A$, $V_{GE} = 15V$, $T_j = 150$ °C*6	_	2.25	_	Volts
Input Capacitance	C _{ies}			_	158	nF
Output Capacitance	C_{oes}	$V_{CE} = 10V$, $V_{GE} = 0V$		_	13	nF
Reverse Transfer Capacitance	C _{res}			_	2.9	nF
Gate Charge	Q_{G}	$V_{CC} = 1000V$, $I_{C} = 600A$, $V_{GE} = 15V$	_	3312	_	nC
Turn-on Delay Time	t _{d(on)}	V_{CC} = 1000V, I_{C} = 600A, V_{GE} = ±15V, R_{G} = 0 Ω , Inductive Load	_	900	_	ns
Rise Time	t _r		_	150	_	ns
Turn-off Delay Time	t _{d(off)}		_	900	_	ns
Fall Time	t _f		_	400	_	ns
Emitter-Collector Voltage	V _{EC} *1	$I_E = 600A$, $V_{GE} = 0V$, $T_j = 25^{\circ}C^{*6}$	_	4.1	5.3	Volts
	•	$I_E = 600A$, $V_{GE} = 0V$, $T_j = 125^{\circ}C^{*6}$	_	2.9	_	Volts
	•	$I_E = 600A$, $V_{GE} = 0V$, $T_j = 150^{\circ}C^{*6}$	_	2.7	_	Volts
Reverse Recovery Time	t _{rr} *1	V _{CC} = 1000V, I _E = 600A, V _{GE} = ±15V	_	_	300	ns
Reverse Recovery Charge	Q _{rr} *1	$R_G = 0\Omega$, Inductive Load	_	23	_	μC
Turn-on Switching Energy per Pulse	E _{on}	V _{CC} = 1000V, I _C = I _E = 600A,	_	167	_	mJ
Turn-off Switching Energy per Pulse	E _{off}	$V_{GE} = \pm 15V$, $R_G = 0\Omega$,	_	168	_	mJ
Reverse Recovery Energy per Pulse	E _{rr} *1	$T_j = 150$ °C, Inductive Load	_	106	_	mJ
Internal Gate Resistance	r _g		_	0.85	_	Ω

^{*1} Represent ratings and characteristics of the anti-parallel, emitter-to-collector free wheeling diode (FWDi). *2 Case temperature (T_C) and heatsink temperature (T_S) is measured on the surface

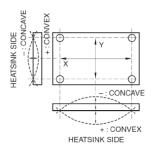
^{*2} Case temperature (T_C) and heatsink temperature (T_S) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. The heatsink thermal resistance should be measured just under the chips.

^{*6} Pulse width and repetition rate should be such as to cause negligible temperature rise.

QIS1760002 Single IGBT Module 600 Amperes/1700 Volts

Electrical Characteristics, T_j = 25°C unless otherwise specified (continued)

Thermal Resistance Characteristics

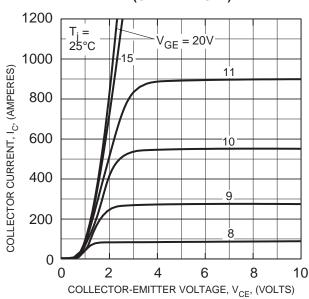

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case*2	R _{th(j-c)} Q	Per Inverter IGBT	_	_	26.8	K/kW
Thermal Resistance, Junction to Case*2	R _{th(j-c)} D	Per Inverter FWDi	_	_	37.9	K/kW
Contact Thermal Resistance, Case to Heatsink*2	R _{th(c-f)}	Thermal Grease Applied	_	10.3	_	K/kW

^{*2} Case temperature (T_C) and heatsink temperature (T_S) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. The heatsink thermal resistance should be measured just under the chips.

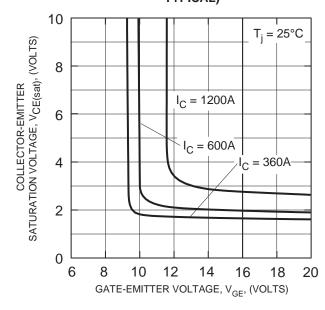
Mechanical Characteristics

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Mounting Torque		Mounting to Terminal, M8 Screw	_	_	95	in-lb
	-	Mounting to Terminal, M4 Screw	_	_	15	in-lb
	-	Mounting to Heatsink, M6 Screw	_	_	40	in-lb
Creepage Distance	d _S	Terminal to Terminal	18	_	_	mm
	-	Terminal to Baseplate	20	_	_	mm
Clearance	d _a	Terminal to Terminal	13	_	_	mm
	-	Terminal to Baseplate	20	_	_	mm
Weight	m		_	600	_	Grams
Flatness of Baseplate	e _c	On Centerline X, Y	-0	_	+200	μm

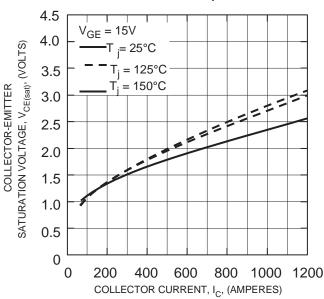
BASEPLATE FLATNESS MEASUREMENT POINT

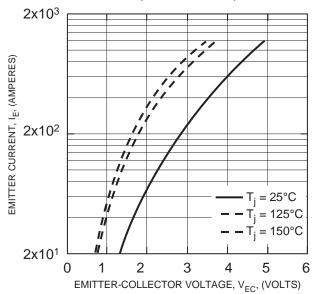

Recommended Operating Conditons, T_a = 25°C

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
(DC) Supply Voltage	V _{CC}	Applied Across C-E	_	1000	1200	Volts
Gate (-Emitter Drive) Voltage	V _{GE(on)}	Applied Across G-E	13.5	15.0	16.5	Volts
External Gate Resistance	R _G	Per Switch	0	_	13.5	Ω

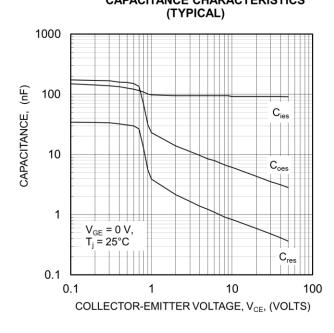


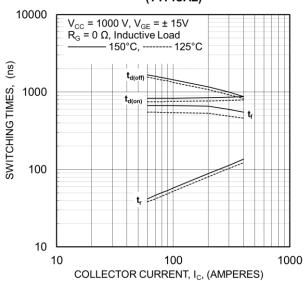
QIS1760002 Single IGBT Module 600 Amperes/1700 Volts


OUTPUT CHARACTERISTICS (CHIP - TYPICAL)

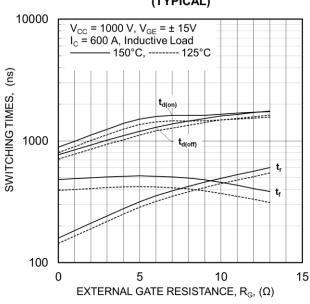

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (CHIP - TYPICAL)

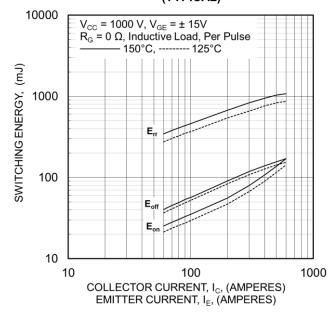
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (CHIP -TYPICAL)


FREE-WHEEL DIODE FORWARD CHARACTERISTICS (CHIP - TYPICAL)

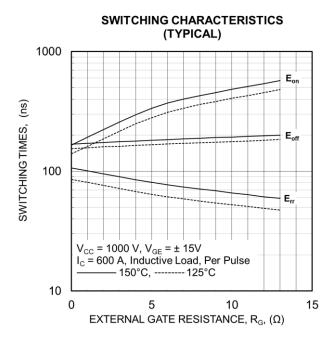


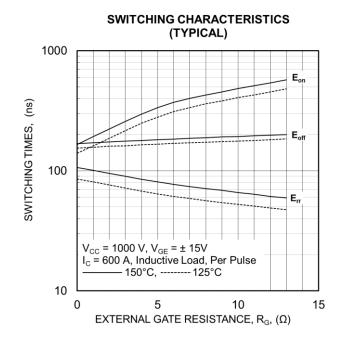
QIS1760002 Single IGBT Module 600 Amperes/1700 Volts

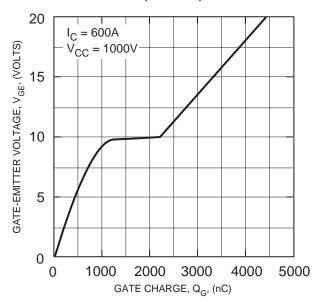



SWITCHING CHARACTERISTICS (TYPICAL)

SWITCHING CHARACTERISTICS (TYPICAL)




SWITCHING CHARACTERISTICS (TYPICAL)



QIS1760002 Single IGBT Module 600 Amperes/1700 Volts

GATE CHARGE VS. V_{GE} (TYPICAL)

