

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts

Dual Hybrid IGBT Module 400 Amperes / 1200 Volts

Description:

Powerex IGBT Modules are designed for use for frequency up to 20 kHz. Each module consists of two IGBT Transistors with each transistor having a reverse connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Low Switching Losses
- □ Super-Fast Recovery Free-Wheel Silicon Carbide **Schottky Diode**
- ☐ High Power Density
- ☐ Isolated Baseplate
- ☐ Aluminum Nitride Isolation

Applications:

- ☐ Energy Saving Power Systems
- ☐ High Frequency Type Power Systems
- ☐ High Temperature Power Systems

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts

Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	QID1240SA1	Units
Operating Junction Temperature	T_jop	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 150	°C
Collector-Emitter Voltage (G-E Short)	V _{CES}	1200	Volts
Gate-Emitter Voltage (C-E Short)	V_{GES}	±20	Volts
Collector Current (TC = 25°C)	Ic	400*	Volts
Peak Collector Current	I _{CM}	800*	Amperes
Emitter Current** (TC = 25°C)	I _E	400*	Amperes
Repetitive Peak Emitter Current (TC = 25°C, tp = 10ms, Half Sine Pulse)**	I _{EM}	TBD*	Amperes
Maximum Collector Dissipation (TC = 25°C, Tj ≤ 150°C)	Pc	2450	W
Operating Junction Temperature, Continuous operation (under switching)	T _{j op}	-40 to 150	°C
Maximum Case Temperature*1	T _{c max}	150	°C
Maximum Junction Temperature	T_{jmax}	175	°C
Mounting Torque, M6 Mounting Screws	_	5	Nm
Module Weight (Typical)	_	270	Grams
Isolation Voltage	V _{ISO}	3500	Volts

^{*1} Case temperature (Tc) and heat sink temperature (Ts) are defined on the each surface (mounting side) of base plate and heat sink under the chips.
*2 Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed T_{J (MAX)} rating.

DC Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain Source Leakage Current	I _{CES}	V _{CE} =1200V, V _{GE} =0V	-	=	1.0	mA
Gate Source Leakage Current	I_{GES}	$V_{CE}=0V$, $V_{GE}=\pm20V$	-	-	0.5	μΑ
Gate Source Threshold Voltage	$V_{\text{GE(th)}}$	$V_{CE}=10V$, $I_{C}=10mA$	5.4	6.0	6.6	Volts
Collector-Emitter Saturation Voltage (chip)		$I_C = 400A, V_{GE} = 15V, Tj = 25^{\circ}C$	-	1.55	1.8	Volts
	$V_{\text{CE}(\text{sat})}$	I _C = 400A, V _{GE} = 15V, Tj = 125°C		1.75		Volts
		$I_C = 400A, V_{GE} = 15V, Tj = 150$ °C	-	1.80	-	Volts
Stray Inductance	Ls	P-N	-	10	-	nH

^{*2} Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed $T_{J (MAX)}$ rating *3 Junction temperature (T_{vj}) should not increase beyond $T_{J (MAX)}$ rating.

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts

Dynamic Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitance	C _{ies}		-	91.2	-	nF
Output Capacitance	C _{oes}	V_{CE} =10V, V_{GE} =0V	-	3.2	-	nF
Reverse Transfer Capacitance	C _{res}		-	1.2	-	nF
Turn-On Delay Time	$t_{d(on)}$		-	300	-	ns
Rise Time	t _r	V_{CC} =600V, V_{GE} = ±15V	_	100	-	ns
Turn-Off Delay Time	$t_{\sf d(off)}$	I_C =400A, R_G =1.2 Ω	-	500	-	ns
Fall Time	t _f	Inductive Load	-	150	-	ns
Turn-On Energy	E _{on}	V_{CC} =600V, V_{GE} = ±15V	-	6.5	-	mJ
Turn-Off Energy	E _{off}	I_C =400A, R_G =0.78 Ω , T_j =150°C Inductive Load	-	16	-	mJ
Recovery Energy	E _{rec}		-	1.3	-	mJ
Total Gate Charge	Q _G	V _{CC} =600V, V _{GE} =±15V, I _C =400A	-	2.8	-	μC
Internal Gate Resistance	r _g	Per Switch	-	1.0	-	Ω

Anti-parallel SiC Shottky Diode, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Capacitive Charge	Qc	V_{CC} =600V, V_{GE} =±15V, I_E =400A	-	TBD	-	μC
Diode Forward Voltage	V _{EC}	V_{GE} =0V, I_E =400A	-	1.53	-	V
blode i diward voltage	- 10 _	T _j =125°C	-	2.05	-	V

Thermal Resistance Characteristics

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per IGBT, ½ Module	-	-	0.04	°C/W
Thermal Resistance, Junction to Case	$R_{th(j-c)}$	Per Diode, ½ Module	-	-	0.10	°C/W
Contact Thermal Resistance	$R_{th(c-s)}$	Per Module, Thermal Grease Applied	-	0.07	-	°C/W

NTC Thermistor Part

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Zero Power Resistance	R ₂₅	T _C =25°C	4.85	5.00	5.15	kΩ
Deviation of Resistance	ΔR/R	$T_C=100^{\circ}C, R_{100}=493\Omega$	-7.3	-	+7.8	%
B constant	B _(25/50)	$B_{(25/50)}=In(R_{25}/R_{50}) / (1/T_{25} - 1/T_{50})^{*4}$	_	3375	_	K
Power Dissipation	P ₂₅	T _C =25°C	_	_	10	mW

^{*4} R25: Resistance at Absolute Temperature T25 (K), R50: Resistance at Absolute Temperature T50 (K), T25 = 25(°C) + 273.15 = 298.15(K), T50 = 50(°C) + 273.15 = 323.15(K)

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts

