Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts # **Dual Hybrid IGBT Module** 400 Amperes / 1200 Volts ## **Description:** Powerex IGBT Modules are designed for use for frequency up to 20 kHz. Each module consists of two IGBT Transistors with each transistor having a reverse connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management. #### Features: - ☐ Low Switching Losses - □ Super-Fast Recovery Free-Wheel Silicon Carbide **Schottky Diode** - ☐ High Power Density - ☐ Isolated Baseplate - ☐ Aluminum Nitride Isolation ## **Applications:** - ☐ Energy Saving Power Systems - ☐ High Frequency Type Power Systems - ☐ High Temperature Power Systems Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts ## Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified | Characteristics | Symbol | QID1240SA1 | Units | |---|--------------------|------------|---------| | Operating Junction Temperature | T_jop | -40 to 150 | °C | | Storage Temperature | T _{stg} | -40 to 150 | °C | | Collector-Emitter Voltage (G-E Short) | V _{CES} | 1200 | Volts | | Gate-Emitter Voltage (C-E Short) | V_{GES} | ±20 | Volts | | Collector Current (TC = 25°C) | Ic | 400* | Volts | | Peak Collector Current | I _{CM} | 800* | Amperes | | Emitter Current** (TC = 25°C) | I _E | 400* | Amperes | | Repetitive Peak Emitter Current (TC = 25°C, tp = 10ms, Half Sine Pulse)** | I _{EM} | TBD* | Amperes | | Maximum Collector Dissipation (TC = 25°C, Tj ≤ 150°C) | Pc | 2450 | W | | Operating Junction Temperature, Continuous operation (under switching) | T _{j op} | -40 to 150 | °C | | Maximum Case Temperature*1 | T _{c max} | 150 | °C | | Maximum Junction Temperature | T_{jmax} | 175 | °C | | Mounting Torque, M6 Mounting Screws | _ | 5 | Nm | | Module Weight (Typical) | _ | 270 | Grams | | Isolation Voltage | V _{ISO} | 3500 | Volts | ^{*1} Case temperature (Tc) and heat sink temperature (Ts) are defined on the each surface (mounting side) of base plate and heat sink under the chips. *2 Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed T_{J (MAX)} rating. #### DC Characteristics, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |---|-----------------------------|--|------|------|------|-------| | Drain Source Leakage Current | I _{CES} | V _{CE} =1200V, V _{GE} =0V | - | = | 1.0 | mA | | Gate Source Leakage Current | I_{GES} | $V_{CE}=0V$, $V_{GE}=\pm20V$ | - | - | 0.5 | μΑ | | Gate Source Threshold Voltage | $V_{\text{GE(th)}}$ | $V_{CE}=10V$, $I_{C}=10mA$ | 5.4 | 6.0 | 6.6 | Volts | | Collector-Emitter Saturation Voltage (chip) | | $I_C = 400A, V_{GE} = 15V, Tj = 25^{\circ}C$ | - | 1.55 | 1.8 | Volts | | | $V_{\text{CE}(\text{sat})}$ | I _C = 400A, V _{GE} = 15V, Tj = 125°C | | 1.75 | | Volts | | | | $I_C = 400A, V_{GE} = 15V, Tj = 150$ °C | - | 1.80 | - | Volts | | Stray Inductance | Ls | P-N | - | 10 | - | nH | ^{*2} Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed $T_{J (MAX)}$ rating *3 Junction temperature (T_{vj}) should not increase beyond $T_{J (MAX)}$ rating. Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts ### Dynamic Characteristics, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |------------------------------|------------------|--|------|------|------|-------| | Input Capacitance | C _{ies} | | - | 91.2 | - | nF | | Output Capacitance | C _{oes} | V_{CE} =10V, V_{GE} =0V | - | 3.2 | - | nF | | Reverse Transfer Capacitance | C _{res} | | - | 1.2 | - | nF | | Turn-On Delay Time | $t_{d(on)}$ | | - | 300 | - | ns | | Rise Time | t _r | V_{CC} =600V, V_{GE} = ±15V | _ | 100 | - | ns | | Turn-Off Delay Time | $t_{\sf d(off)}$ | I_C =400A, R_G =1.2 Ω | - | 500 | - | ns | | Fall Time | t _f | Inductive Load | - | 150 | - | ns | | Turn-On Energy | E _{on} | V_{CC} =600V, V_{GE} = ±15V | - | 6.5 | - | mJ | | Turn-Off Energy | E _{off} | I_C =400A, R_G =0.78 Ω , T_j =150°C Inductive Load | - | 16 | - | mJ | | Recovery Energy | E _{rec} | | - | 1.3 | - | mJ | | Total Gate Charge | Q _G | V _{CC} =600V, V _{GE} =±15V, I _C =400A | - | 2.8 | - | μC | | Internal Gate Resistance | r _g | Per Switch | - | 1.0 | - | Ω | ## Anti-parallel SiC Shottky Diode, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |------------------------|-----------------|---|------|------|------|-------| | Capacitive Charge | Qc | V_{CC} =600V, V_{GE} =±15V, I_E =400A | - | TBD | - | μC | | Diode Forward Voltage | V _{EC} | V_{GE} =0V, I_E =400A | - | 1.53 | - | V | | blode i diward voltage | - 10 _ | T _j =125°C | - | 2.05 | - | V | #### **Thermal Resistance Characteristics** | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |--------------------------------------|----------------------|------------------------------------|------|------|------|-------| | Thermal Resistance, Junction to Case | R _{th(j-c)} | Per IGBT, ½ Module | - | - | 0.04 | °C/W | | Thermal Resistance, Junction to Case | $R_{th(j-c)}$ | Per Diode, ½ Module | - | - | 0.10 | °C/W | | Contact Thermal Resistance | $R_{th(c-s)}$ | Per Module, Thermal Grease Applied | - | 0.07 | - | °C/W | #### **NTC Thermistor Part** | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |-------------------------|----------------------|--|------|------|------|-------| | Zero Power Resistance | R ₂₅ | T _C =25°C | 4.85 | 5.00 | 5.15 | kΩ | | Deviation of Resistance | ΔR/R | $T_C=100^{\circ}C, R_{100}=493\Omega$ | -7.3 | - | +7.8 | % | | B constant | B _(25/50) | $B_{(25/50)}=In(R_{25}/R_{50}) / (1/T_{25} - 1/T_{50})^{*4}$ | _ | 3375 | _ | K | | Power Dissipation | P ₂₅ | T _C =25°C | _ | _ | 10 | mW | ^{*4} R25: Resistance at Absolute Temperature T25 (K), R50: Resistance at Absolute Temperature T50 (K), T25 = 25(°C) + 273.15 = 298.15(K), T50 = 50(°C) + 273.15 = 323.15(K) Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Dual Si/SiC Hybrid IGBT Module 400 Amperes / 1200 Volts