

1200V/900A Half Bridge SiC MOSFET Module

Description

The PRXS900HF12I4C1 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Motor drives and Renewable energy.

Features

- □ Blocking Blocking voltage 1200V
- $R_{DS(on)} = 2.0 \text{m}\Omega$
- ☐ Low thermal resistance with Si₃N₄ AMB
- □ 175°C maximum junction temperature
- □ Thermistor inside
- □ Low Switching Losses

Applications

- □ xEV Applications
- □ Motor Drives
- □ Vehicle Fast Chargers
- □ Smart-Grid/Grid-Tied Distributed Generation

Circuit Diagram

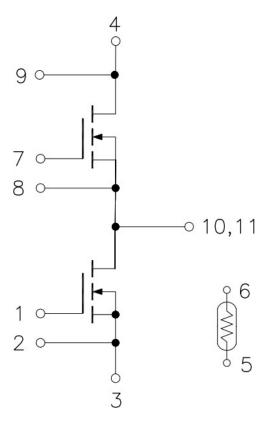


Figure 1. Out drawing & circuit diagram for PRXS900HF12I4C1

PRXS900HF12I4C1 1200V/900A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

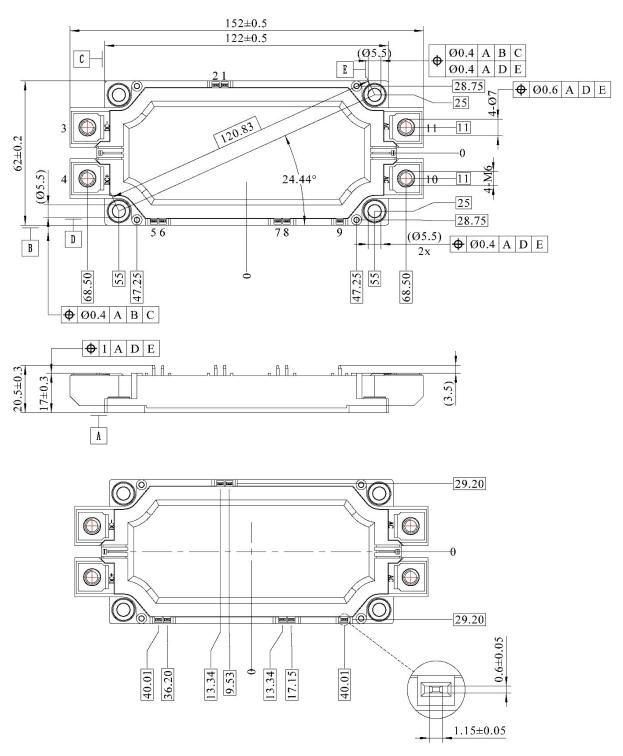


Figure 2. Pin configuration

PRXS900HF12I4C1 1200V/900A Half Bridge SiC MOSFET Module

Module

Parameter	Conditions	Value	Unit	
Isolation Voltage	RMS, f=50Hz, t=1min	3.4	kV	
Material of module baseplate	-	Cu	-	
Creepage distance	terminal to heatsink terminal to terminal	14.5 13	mm	
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm	
CTI	-	>400	-	
Module lead resistance, terminals-chip	T _C =25° C	0.5	mΩ	
Mounting torque for module mounting	M5, M6	3 to 6	Nm	
Weight	-	340	g	

Maximum Ratings $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Condition	Ratings	Unit
V _{DSS}	Drain-Source Voltage	G-S Short	1200	V
V _{GSS}	Gate-Source Voltage	D-S Short, AC frequency ≥1Hz, Note1	-10 to 22	V
I_{DS}	DC Continuous Drain Current	$T_{\rm C} = 25$ °C, $V_{\rm GS} = 18$ V	1000	A
I _{DS}	DC Continuous Drain Current	$T_{\rm C} = 60^{\circ} {\rm C, V_{GS}} = 18 {\rm V}$	900	A
I_{SD}	Source (Body diode) Current	T _C =25°C, with ON signal	1000	A
I_{SD}	Source (Body diode) Current	T _C =60°C, with ON signal	900	A
I _{DSM}	Pulse Forward Current	$T_C = 25$ °C, Pulse width =1 ms, $V_{GS} = 20$ V, Note2	1800	A
P _{tot}	Total Power Dissipation	T _C =25°C	3000	W
T _{jmax}	Max Junction Temperature	-	175	° C
T_{stg}	Storage Temperature	-	-40 to 125	° C

Note1: Recommended Operating Value, +18V/-5V, +18V/-4V, +15V/-4V

Note2: Pulse width limited by maximum junction temperature

NTC Characteristics

Symbol	Parameter	C . IV		Value		
		Condition	Min.	Тур.	Max.	Unit
R ₂₅	Resistance	T _C =25° C	-	5	-	kΩ
ΔR/R	Deviation of R ₁₀₀	$T_{\rm C} = 100^{\circ} {\rm C}, R_{100} = 493\Omega$	-5	-	5	%
P ₂₅	Power dissipation	T _C =25° C	-	-	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	-	3375	-	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	-	3411	-	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

PRXS900HF12I4C1 1200V/900A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

Cbl	T4		C . Pr		Value			Unit
Symbol	Item	Condition			Min.	Тур.	Max	Un
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 900\mu A$			1200	-	-	7
I_{DSS}	Zero gate voltage drain Current	V _{DS} =1200V, V _{GS} =0				30	-	μ
		I _D =315mA	T _i =25° (1.8	2.7	_	,
$V_{\text{GS(th)}}$	Gate-source threshold Voltage	$V_{DS} = V_{GS}$	T _i =175°		-	2.1	-	,
I_{GSS}	Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V,$	T _j =25° C		-	-	900	n
		I _D =900A	T _i =25° C	2	-	2.5	3.3	n
D (GI:)	Static drain-source	$V_{GS} = +15V$	T _i =175°		-	3.5	-	n
R _{DS(on)} (Chip)	On-state resistance	I _D =900A	T _j =25° C	2	-	2.0	-	n
		$V_{GS} = +18V$	T _j =175°	С	-	2.8	-	r
		I _D =900A	T _j =25° C	2	-	2.25	2.97	
V (Chin)	Static drain-source	$V_{GS} = +15V$	$T_j = 175^{\circ}$	С	-	3.15	-	
V _{DS(on)} (Chip)	On-state Voltage	I _D =900A	T _j =25° C	2	-	1.80	-	
		V_{GS} =+18V	T _j =175°	C	-	2.52	-	
C_{iss}	Input Capacitance				-	52.2	-	
C _{oss}	Output Capacitance	$V_D = 1000V, V_{GS} = 0V$	nV		-	1.60	-	
C_{rss}	Reverse transfer Capacitance	1-200KHz, v _{AC} -231	f=200kHz, V _{AC} =25mV			0.13	-	
R_{Gint}	Internal gate resistor	-				0.7	-	
Q_G	Total gate charge	$V_{DD} = 800V, I_D = 540A, V_{GS} = +18/-5V$				1890	-	
				T _j =25° C	-	51	-	
$t_{d(on)}$	Turn-on delay time			T _i =150° C	-	47	-	ns
			_		-	29	-	
t_r	Rise time			$T_j = 25^{\circ} \text{ C}$ $T_j = 150^{\circ} \text{ C}$	_	27	-	ns
			-		_	116	-	
$t_{d(off)}$	Turn-off delay time	$V_{DD} = 600V$ $I_{D} = 900A$		$T_j = 25^{\circ} \text{ C}$ $T_j = 150^{\circ} \text{ C}$	_	132	-	1
		$V_{GS} = +18/-4V$		T _j =25° C	-	25	-	
\mathbf{t}_{f}	Fall time Inductive load switching operation	Inductive load switching operation		T _j =150° C	-	42	-	1
E _{on}	Turn-on power dissipation			T _i =25° C	_	35.5	-	
				T _i =150° C	_	41.7	_	1
				T _i =25° C	_	18.5	_	
$\rm E_{off}$	Turn-off power dissipation				_	21.8	_	1
R _{th(j-c)}	FET Thermal Resistance	Junction to Case		T _j =150° C	_	0.05	-	K
	Contact thermal Resistance	With thermal conductive grease, Note3			_	0.015		K

Note3: Assumes Thermal Conductivity of grease is 0.9W/m·K and thickness is 50um.

PRXS900HF12I4C1 1200V/900A Half Bridge SiC MOSFET Module

Body Diode Electrical Characteristics (T_i =25°C unless otherwise specified, chip)

Cl 1	14	Condition		Value			TI .*4
Symbol	Item			Min.	Typ.	Max	Unit
V	Body Diode Forward Voltage	$V_{GS} = -5V$ $I_{SD} = 900A$	T _j =25° C	-	6.3	-	V
V_{SD}			T _i =175° C	-	5.6	-	
т	Reverse recovery time	$\begin{aligned} &V_{DD}{=}600V\\ &I_{D}{=}900A\\ &V_{GS}{=}{+}18/{4}V\\ &R_{gon}{'}R_{goff}{=}3.3/2.2\Omega\\ &Inductive\ load\\ &switching\ operation \end{aligned}$	T _i =25° C	-	29	-	ns
T _{rr}	Reverse recovery time		$T_i=150^{\circ} C$	-	47	-	
	Q _{rr} Reverse recovery charge		$T_i=25^{\circ} C$	-	3.5	-	_
Q _{rr}			T _j =150° C	-	13.2	-	uС
E _{rr}	Diode switching power dissipation		T _j =25° C	-	1.82	-	I
			T _j =150° C	-	5.65	-	mJ

Test Conditions

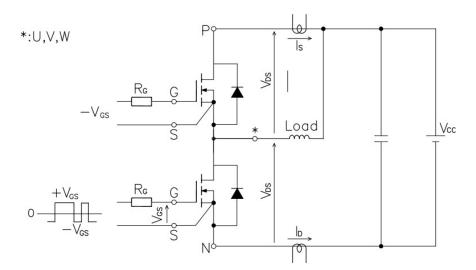


Figure 3. Switching time measure circuit

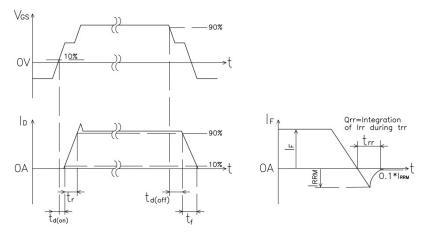
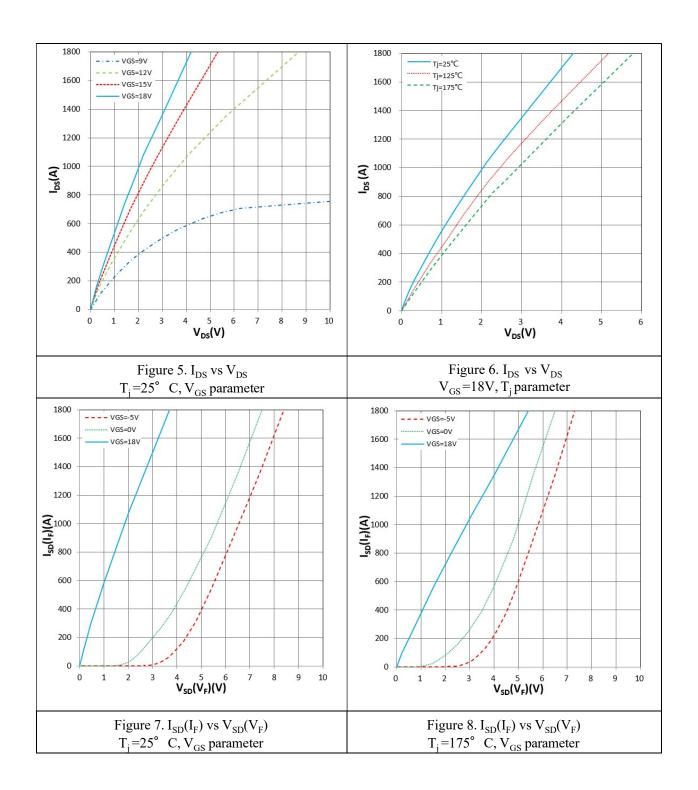
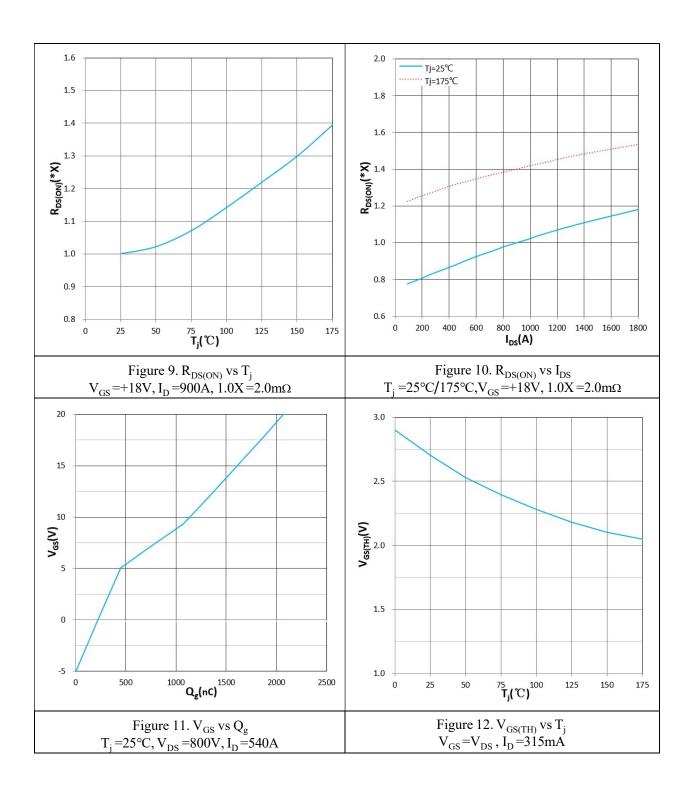
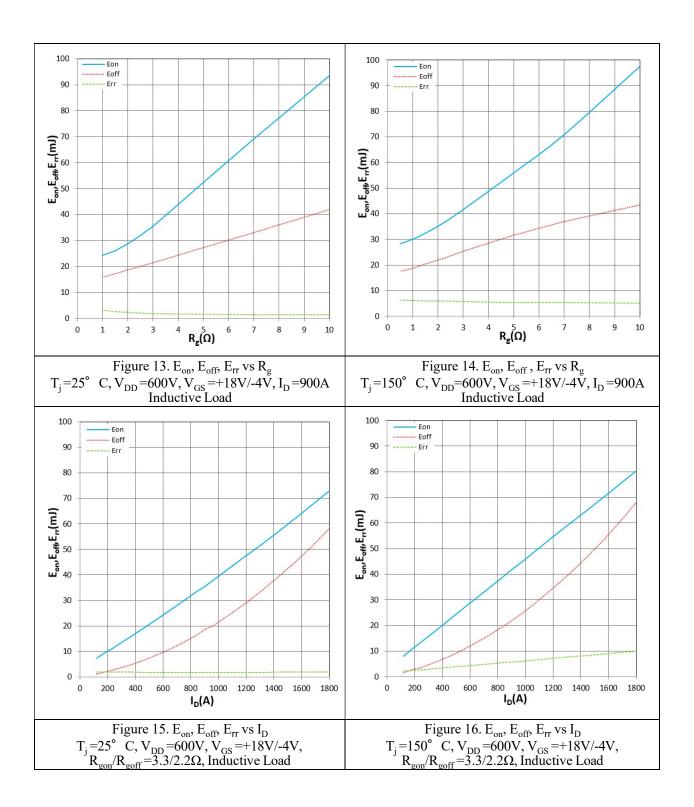



Figure 4. Switching time definition



PRXS900HF12I4C1 1200V/900A Half Bridge SiC MOSFET Module

PRXS900HF12I4C1 1200V/900A Half Bridge SiC MOSFET Module



8

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

PRXS900HF12I4C1 1200V/900A Half Bridge SiC MOSFET Module

