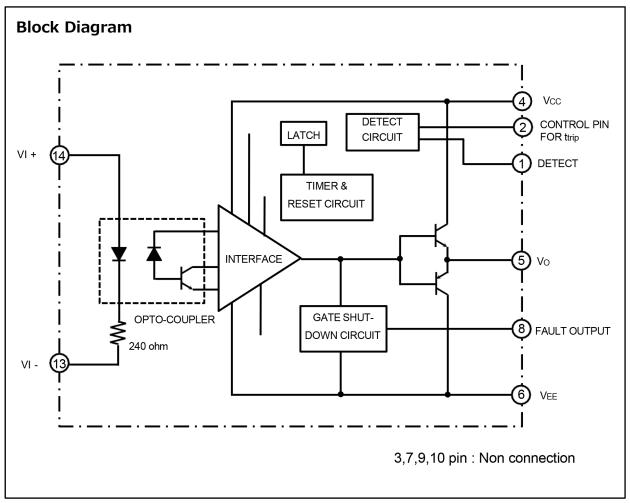


Hybrid IC For Driving IGBT Modules

Description

VLA541 is a hybrid integrated circuit designed for driving n-channel IGBT modules in any gate-amplifier application. This device operates as an isolation amplifier for these modules and provides the required electrical isolation between the input and output with an opto-coupler.

Recommended IGBT modules:


 V_{CES} = 600V series up to 200A class V_{CES} = 1200V series up to 150A class

Features

- $\hfill\Box$ Electrical isolation between input and output with opto-coupler
 - (Viso = 2500Vrms for 1minute)
- Two supply driver topology
- Built-in short circuit protection circuit (With a pin for fault out)
- □ CMOS compatible input interface

Applications

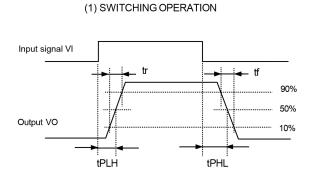
To drive IGBT modules for inverter or AC servo systems application

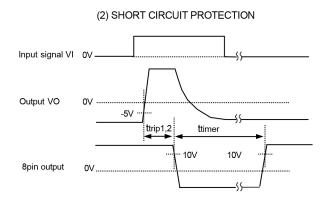
Hybrid IC For Driving IGBT Modules

Maximum Ratings (Unless otherwise noted, Ta=25°C)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Cupply valtage	DC	18	V
VEE	Supply voltage	BC BC	-15	V
Vı	Input signal voltage	Applied between; 13pin and 14pin 50% duty cycle, pulse width 1ms	-1 ~ +7	V
Vo	Output voltage	When the output voltage is "H"	Vcc	V
ЮНР	Outrot and bound	Pulse width 2us	-3	Α
lolp	Output peak current		3	Α
Viso	Isolation voltage	Sine wave voltage 60Hz, for 1minute	2500	Vrms
Tc	Case temperature	-	95	°C
Topr	Operating temperature	No condensation allowable	-20 ~ +70	°C
Tstg	Storage temperature	No condensation allowable	-40 ~ +100 (*1)	°C
lFO	Fault output current	Applied 8pin	20	mA
VR1	Input voltage at 1pin	Applied 1pin	50	V

^(*1) Differs from H/C condition

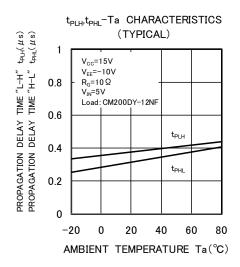

Hybrid IC For Driving IGBT Modules

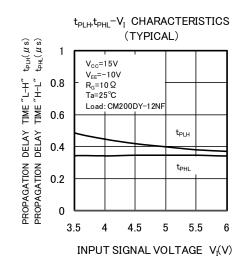

Electrical Characteristics (Unless otherwise noted, Ta=25°C, $V_{CC}=15$ V, $V_{EE}=-10$ V, RG=10 ohm)

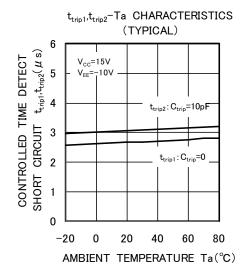
Symbol	Parameter	Conditions	Limits			TT •4
			Min	Тур	Max	Unit
Vcc	- Supply voltage	Recommended range	14	15	17	V
VEE			-7	-	-12	V
VIN	Pull-up voltage on primary side	Recommended range	4.75	5	5.25	V
lıн	"H" input signal current	Recommended range	10	13	16	mA
f	Switching frequency	Recommended range	-	-	20	kHz
Rg	Gate resistance	Recommended range	3	-	-	ohm
lін	"H" input signal current	VIN = 5V HC04 drive	-	13	-	mA
Vон	"H" output voltage	-	13	14	-	V
Vol	"L" output voltage	-	-8	-9	-	V
tpLH	"L-H" propagation time	IIH=13mA	0.2	0.4	1	μs
tr	"L-H" rise time	IIH=13mA	-	0.3	1	μs
tphL	"H-L" propagation time	IIH=13mA	0.2	0.4	1	μs
tf	"H-L" fall time	IIH=13mA	-	0.3	1	μs
ttimer	Timer	Between start and cancel (under input signal "OFF")	1	-	2	ms
lfo	Fault output current	Applied 8pin, R = 4.7k ohm	-	5	-	mA
ttrip1	Controlled time detect short circuit 1	Pin1: 15V and more, Pin2:open	-	2.6	-	μs
ttrip2	Controlled time detect short circuit 2 (*2)	Pin1: 15V and more, Pin2- 4:10pF (connective capacitance)	-	3	-	μs
Vsc	SC detect voltage	Collector voltage of IGBT module	15	-	-	V

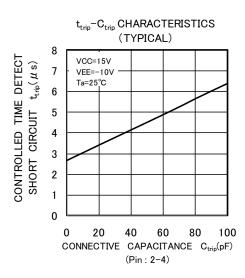
^(*1) Length of wiring of capacitor controlled time detect short-circuit is within 5cm from pin2 and pin4 coming and going.

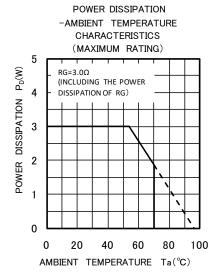
Definition Of Characteristics

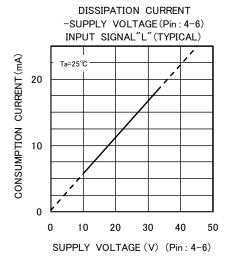




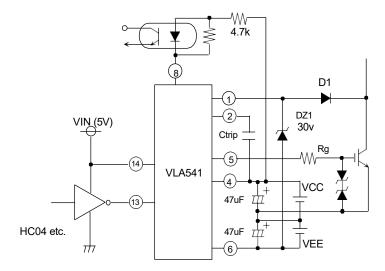



Hybrid IC For Driving IGBT Modules


Performance Curves



Hybrid IC For Driving IGBT Modules


Operation Of Protection Circuit

- 1) In case the gate voltage is "H" and the collector voltage is high, this hybrid IC will recognize the circuit as short circuit and immediately reduce the gate voltage.

 Besides, put out an error signal ("L") which inform that protection circuit is operating at the same time from pin8.
- 2) The protection circuit reset and resort to ordinary condition if input signal is "OFF" when the premised 1~2msec passed. ("OFF" period needs 10us or more)
- 3) When the output rises, the controlled time detect short circuit (Typ 2.6us) is set up so that on-time of IGBT can be secured properly.

 It is possible to adjust that time by connecting the capacitor (Ctrip) between pin2 and 4.

Application Circuit Example

Ctrip = 0 ~ 47pF (Rough guide, 50V,ceramic)

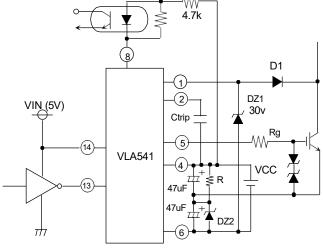
D1: Fast recovery diode (trr ≤ 0.2us)

RP1H (SanKen) etc.

Hybrid IC For Driving IGBT Modules

Operation Flow On Detecting Short Circuit

DETECTION OF SHORT CIRCUIT GATE SHUTDOWN TIMER START OUTPUT ALARM INPUT SIGNAL IS OFF Yes CLEAR ALARM


(*) Output voltage with protection circuit operating is about -IVEE1+2V

ENABLE OUTPUT

Precaution

- Voltage compensate capacitors are expected to be located as close as possible from the hybrid IC.
- D1 requires approximately the same voltage of power modules.
- If reverse recovery time of D1 is long, pin1 is applied high voltage.
 In that case, counterplan for protection which insert a zener diode between pin 1 and 6 is necessary like above diagram.
- In case pin 2 is operating, the Ctrip is expected to be wired as close as possible from pin 2 and pin 4.
 (Less than 5cm coming and going)

Application Example Of Single Power Supply

Vcc = 24V

DZ2:8.2V,1/2W

R: 2.7k ~3.3kohm