## Fast Switching SCR

1100A Avg. (1725 RMS) Up to 1200 Volts 40-60 $\mu \mathrm{s}$


| Symbol | Inches |  | Millimeters |  |  |
| :--- | :---: | ---: | ---: | ---: | :---: |
|  | Min. | Max. | Min. |  |  |
| $\phi \mathrm{D}$ | 2.850 | 2.900 | Max. |  |  |
| $\phi \mathrm{D}_{1}$ | 1.845 | 1.855 | 76.39 | 73.66 |  |
| $\phi \mathrm{D}_{2}$ | 2.560 | 2.640 | 65.02 | 67.12 |  |
| H | 1.030 | 1.070 | 26.16 | 27.18 |  |
| $\phi \mathrm{~J}$ | .135 | .145 | 3.43 | 3.68 |  |
| $\mathrm{~J}_{1}$ | .075 | .090 | 1.91 | 2.29 |  |
| L | 11.50 | 12.50 | 292.10 | 317.50 |  |
| N | .050 |  | 1.27 |  |  |

Creap Distance-1.20 in. min. ( 30.48 mm ).
Strike Distance-. 70 in . min. ( 17.78 mm ).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-2 ib. (908 g).

1. Dimension " $H$ " is a clamped dimension.


Applications:

- Induction Heating
- Transportation
- Inverters


## Features:

T9G Outline

- Interdigitated, di/namic Gate Structure
- Hard Commutation Turn-Off
- Low Switching Losses at High

Frequency

- Soft Commutation (Feedback Diode)

Testing Available

- High di/dt with soft gate control

Ordering Information

| Type | Voltage |  | Current |  | Turn-off |  | Gate current |  | Leads |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| code | VDRM and VRRM * (V) | cad" | $\begin{aligned} & i \text { tiavi } \\ & (A) \end{aligned}$ | cotas | $\underset{\text { usec }}{\text { usq }}$ | code | $\begin{aligned} & \text { IGT } \\ & \text { (ma) } \end{aligned}$ | code | Case | Code |
| тесн | $\begin{array}{r} 600 \\ 800 \\ 1000 \\ 1200 \end{array}$ |  | 1100 |  | $\begin{aligned} & 40 \\ & 50 \\ & 60 \\ & 80 \\ & 100 \end{aligned}$ |  | 300 |  | T9G | DH |

Example
Obtain optimum device performance for your application by selecting proper order code.
Type T9GH rated at 1100 A average with VDRM $=800 \mathrm{~V}$
$t q=50 u s e c$.
IGT = 300 ma , and standard 12 inch leads -- order as:

> "for lower voltages consult factory

| Type |  |  |  | Voltage |  | Current |  | Turn Off <br> 3 | Gate Current$2$ | Leads |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | 9 | G | H | 0 | 8 | 1 | 1 |  |  | D | H |

# Fast Switching <br> SCR <br> T9GH_-11 

## Voltage

| (2) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Elocking State Maximums ( $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ ) | Symbol | 600 | 800 | 1000 | 1200 |
| Repetitive peak forward blocking voltage , V | $V_{\text {DRM }}$ |  |  |  |  |
| Repetitive peak reverse voltage, $V$ | $V_{\text {RRM }}$ |  |  |  |  |
| Non-repetitive transient peak reverse voltage, | RRM | 600 | 800 | 1000 | 1200 |
| t S $5.0 \mathrm{msec}, \mathrm{V}$ | $V_{\text {RSM }}$ | 700 | 900 | 1100 | 1300 |
| Forward leakage current, mA peak | I DRM |  |  |  |  |
| Reverse leakage current, mA peak | I RRM |  |  |  |  |

## Current

| Conducting State Maximums $\left(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right.$ ) | Symbol | T9GH_11 | Gate $\left(\mathrm{T} J=25^{\circ} \mathrm{C}\right)$ | Symbol | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RMS forward current. A | ${ }^{1}$ T (rms) | 1725 | Gate current to trigger at $\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{~mA} .$. | IGT |  | 200 | 300 |
| Ave. forward current. A | ${ }^{1} \mathrm{~T}$ (av) | 1100 | Gate voltage to trigger at $\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{~V} \ldots .$. | VGT |  | 1.5 | 3.0 |
| One-half cycle surge current 3 , $\mathrm{A}^{\prime} \ldots$ $i^{2} \mathrm{t}$ for fusing ( $1=8.3 \mathrm{~ms}$ ) $\bar{A}^{2} \mathrm{sec}$ | ${ }_{12 \mathrm{t}}^{1} \mathrm{TSM}$ | 17.000 | Non-triggering gate voltage. $\mathrm{T} J=125^{\circ} \mathrm{C}$, and rated VORM. V. |  |  |  |  |
| Max $t^{2} \mathrm{t}$ of package ( $1=8.3 \mathrm{~ms}$ ). $A^{2} \mathrm{sec}$ | 12 t 12 t | 1,203,000 | Nondriggering Gate Current at | $V_{G D M}$ |  |  | . 15 |
| $\begin{aligned} & \begin{array}{l} \text { Forward voltage drop at ITM }=1500 \mathrm{~A} \\ \text { and } T J=25^{\circ} \mathrm{C}, V \end{array}, \end{aligned}$ | $V_{\text {TM }}$ | $90 \times 10^{6}$ | $\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{~mA} \ldots \ldots \ldots \ldots$. | IGNT |  | 20 |  |
|  |  | 1.85 | Peak forward gate current. A. | ${ }^{\text {G GTM }}$ |  |  | 10 |
|  |  |  | Peak reverse gate voltage, V. | VGRM |  |  | 5 |
| Min. Repetitive di/dt A/usec.(1) | di/dt | 600 | Peak gate power, Watts. | PGM |  |  | 60 |
|  |  |  | Average gate power, Watt | $\mathrm{PG}_{\mathrm{G}}(\mathrm{av})$ |  |  | 3 |

## Switching

$\left(\mathrm{T} J=25^{\circ} \mathrm{C}\right)$
Symbol

HARD COMMUTATION: (1)
Typical Turn-off time, IT $=1000 \mathrm{~A}$
$50 \mathrm{~V} \leq \mathrm{V}_{\mathrm{R}} \leq \mathrm{V}_{\mathrm{R} R \mathrm{~m}}$
$T J=125^{\circ} \mathrm{C}$, di $\mathrm{R} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{usec}$ reappliéd $d v / d t=$ 200V/usec linear to 0.8 VDRM, usec
Typical Turn-On and Delay Time $\mathrm{TTM}=1000 \mathrm{~A}, \mathrm{tp}=450{ }^{9}$ usec
$\mathrm{VD}=1100 \mathrm{~V}$, usec
Typical Reverse recovery charge for 40 usec device.
iT $=1000 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{usec}$
$\mathrm{T} J=125^{\circ} \mathrm{C}, \mathrm{tp}=100 \mathrm{usec}, \mathrm{ucol}$
Minimum Critical $d v / d t$ exponential
to VDRM
$\mathrm{TJ}=125^{\circ} \mathrm{C}, \mathrm{V} / \mathrm{usec}$ (7) (3)
Minimum di/dt @ non-repetitive.
(1) (1) (1) A/usec

Latching Current
$V_{D}=75 \mathrm{~V}, \mathrm{~mA}$
Holding Current
$\mathrm{VD}=75 \mathrm{~V}, \mathrm{ma}$
Thermal and Mechanical

| Thermal and | Symbo | Min | Typ Max |
| :---: | :---: | :---: | :---: |
| Oper. junction temp.. ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{J}$ | -40 | 125 |
| Storage temp.. ${ }^{\circ} \mathrm{C}$ | $T_{\text {stg }}$ | -40 | 150 |
| Mounting torce, lb ${ }^{\text {a }}$ ' |  | 5000 | 5500 |
| Thermal resistance with double sided cooling' |  |  |  |
| Junction to case. ${ }^{\circ} \mathrm{C} /$ Watt. | R ()JC |  |  |
| Case to sink, lubricated, ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Watt | Rocs | 006 | 0075 |

(1) Consuit recommended mounting procedures.
(2) Applies for zero or negative gate bias
(3) Per JEDEC RS-397, 5.2.2.1.
(4) With recommended gate drive
(5) For different turn-off values or conditions, consult factory.
(ㅇ) Per JEDEC standard AS-397, 5.2.2.6.
(3) For operation with antiparallel diode, consult factory.


# Fast Switching SCR T9GH_-11 

## 1100A Avg (1725 RMS) Up to 1200 Volts 40-60 $\mu \mathrm{s}$

## Sinusoidal Current Data




MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH ( $\mathrm{T}_{\mathrm{C}}=65^{\circ} \mathrm{C}$ )


MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (TC $=90^{\circ} \mathrm{C}$ )

Trapezoidal Wave Current Data
 Puise Width - Microseconds
ENERGY PER PULSE FOR TRAPEZOIDAL PULSES
(di/dt = 50A/usec)


Pulse Width - Microseconds
ENERGY PER PULSE FOR TRAPEZOIDAL PULSES
(di/dt = 100A/usec)


```
1100A Avg.
(1725 RMS)
Up to 1200 Volts
40-60 \mus
Fast Switching SCR
T9GH_-11
```

Trapezoidal Wave Current Data


Pulse Width - Microseconds
MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 50A/usec)


Pulse Width - Microseconds
MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT
vs. PULSE WIDTH (di/dt $=100 \mathrm{~A} / \mathrm{usec}$ )


Pulse Width - Microseconds
 vs. PULSE WIDTH (di/dt = 50A/usec)
 Pulse Width - Microseconds
MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT
vs. PULSE WIDTH ( $\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{usec}$ )


Pulse Width - Microseconds
MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 200A/usec)

