Fast Switching SCR T9GH__11

1100A Avg. (1725 RMS) Up to 1200 Volts $40-60 \mu s$

	Inches		Millimeters			
Symbol -	Min. Max.		Min.	Max.		
φD	2.850	2.900	72.39	73.66		
φD.	1.845	1.855	46.86	47.12		
ϕD_2	2.560	2.640	65.02	67.06		
Н	1.030	1.070	26.16	27.18		
φJ	.135	.145	3.43	3.68		
j,	.075	.090	1.91	2.29		
L	11.50	12.50	292.10	317.50		
N	.050		1.27			

Creep Distance—1.20 in. min. (30.48 mm). Strike Distance—.70 in. min. (17.78 mm). (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight—2 lb. (908 g).

1. Dimension "H" is a clamped dimension.

T9G Outline

Features:

- Interdigitated, di/namic Gate Structure
- Hard Commutation Turn-Off
- Forward Blocking Capabilities to 1200
- Low Switching Losses at High Frequency
- Soft Commutation (Feedback Diode) Testing Available
- High di/dt with soft gate control

Applications:

- Induction Heating
- Transportation
- Inverters

Ordering Information

Туре	Voltage	C	urrent	Turi	n-off	Gate	current	Lea	ads
Code	VDRM and VRRM * (V)	de IT(av)	Code	tq usec	Code	lgt (ma)	Code	Case	Code
T9GH	600 800 1000 1200	}	• 11	40 50 60 80 100	4 3 2 1 X	300	2	_ T9G	DH 2

Example

Obtain optimum device performance for your application by selecting proper order code.

Type T9GH rated at 1100A average with VDRM = 800V tq = 50 usec.

IGT = 300 ma, and standard 12 inch leads -- order as:

*for	lower	voltages	consult	factory
"for	lower	voitages	CONSUL	I actor y

Туре	Voltage	Current	Turn Off	Gate Current	Leads	
T .9 G H	0 8	1 1	3	2	D H	

1100A Avg. (1725 RMS) Up to 1200 Volts $40-60 \mu s$

Fast Switching SCR T9GH__11

Voltage					*
Blocking State Maximums (T _J = 125°C)	Symbol				
Repetitive peak forward blocking voltage , V	VDRM	600	800	1000	1200
Repetitive peak reverse voltage, V	VRRM	600	800	1000	1200
Non-repetitive transient peak reverse voltage, $t \leq 5.0$ msec, V	[∨] RSM	700	900	1100	1300
Forward leakage current, mA peak	DRM	-	9	90	

	eı	

Conducting State Maximums (T _J = 125°C)	Symbol	T9GH11
RMS forward current, A Ave. forward current, A One-half cycle surge current(), A' I't for fusing (t=8.3 ms) Ā'sec Max I't of package (t=8.3 ms), A'sec	T(rms) T(av) TSM i2t 2t	1725 1100 17,000 1,203,000
Forward voltage drop at ITM = 1500A and TJ = 25°C, V	v _{TM}	90 x 10 ⁶
Min. Repetitive di/dt A/usec. ① ① (€ di/dt	600

Switching				
(T _J =25°C)	Symbol			
HARD COMMUTATION: ①			-	
Typical Turn-off time, IT = 1000A				
50V≤VR≤VRRM				
TJ = 125°C, di R/dt = 100A/usec				
reapplied dv/dt =			40-60	
200V/usec linear to 0.8 VDRM, used	3			
Typical Turn-On and Delay Time				
ITM = 1000A, tp = 450 usec	ton	1	3.0	
Vp = 1100V, usec	td		1.5	
Typical Reverse recovery charge for 40				
usec device		l .		
IT = 1000A, di R/dt = 100A/usec				
TJ = 125°C, tp = 100 usec, ucol	QRR		360	
Minimum Critical dv/dt exponential				
to VDRM				
TJ = 125°C, V/usec ② ③	dv/dt	4	400	
Minimum di/dt @ non-repetitive,				
① ④ ① A/usec	di∕dt	1	000	
Latching Current				
VD = 75V, mA	Typ' IL	1	500	
Holding Current	Max	1	1000	
Vp = 75V, ma	Тур		300	
	Max ^{IH}	l	800	
Thermal and Mechanical	Symbol	Min	Тур	Max

-40

---40

5000

125

150

.023

.0075

①	Consult	recommended	mounting	procedures.

Case to sink, lubricated, °C/Watt R#CS

Oper, junction temp., ${}^{\circ}C \dots T_J$

Mounting force, lb.//.....

① Applies for zero or negative gate bias. ② Per JEDEC RS-397, 5.2.2.1.

Thermal resistance

with double sided cooling's

With recommended gate drive.
 For different turn-off values or conditions, consult factory.
 Per JEDEC standard RS-397, 5.2.2.6.

① For operation with antiparallel diode, consult factory.

Gate (TJ=25°C)	Symbol	Min	Тур	Max
Gate current to trigger at VD = 12V, mA	^I GT		200	300
Gate voltage to trigger at $V_D = 12V, V$	VGT		1.5	3.0
Non-triggering gate voltage, TJ=125°C, and rated VDRM, V	VGDM			.15
V _D =12V, mA	GNT	ľ	20	
Peak forward gate current, A				10
Peak reverse gate voltage, V				5
Peak gate power, Watts	PGM			60
Average gate power, Watts	PG(av)	1		3

404

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

Fast Switching SCR T9GH__11

1100A Avg. (1725 RMS) Up to 1200 Volts 40-60 μs

Sinusoidal Current Data

Pulse Width — Microseconds
ENERGY PER PULSE FOR SINUSOIDAL PULSES

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (TC = 65°C)

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (TC = 90°C)

ENERGY PER PULSE FOR TRAPEZOIDAL PULSES (di/dt = 50A/usec)

ENERGY PER PULSE FOR TRAPEZOIDAL PULSES (di/dt = 100A/usec)

ENERGY PER PULSE FOR TRAPEZOIDAL PULSES (di/dt = 200A/usec)

405

Operating Current

Peak

100

30

1100A Avg

(1725 RMS)

Up to 1200 Volts

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 50A/usec)

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 100A/usec)

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 200A/usec)

100 Pulse Width - Microseconds MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 50A/usec)

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 100A/usec)

MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs. PULSE WIDTH (di/dt = 200A/usec)

406