Trench-Gate Technology for The Next Generation of MOS Power Devices

IEEE, APEC Conference 1999

Eric R. Motto
Sr. Application Engineer
Powerex Inc.
Youngwood PA USA
Introduction

1. The Trench Gate
 Structure, Development History and Advantages

2. Low Voltage MOSFETs
 $R_{DS(on)}$, Small packages, Q_G, Future Direction

3. High Power IGBT Modules for Industrial Applications
 Low $V_{CE(sat)}$, Low losses, Reduced EMI/RFI

4. Special Devices
 Strobe Flash, Fork Lift, Microwave Oven

5. Conclusion
Planar versus Trench-Gate MOSFET Unit Cell Comparison

Planar Gate Cell

- Source
- Gate
- Drain
- \(R_{\text{Channel}} \)
- \(R_{n-} \)
- \(R_{\text{JFET}} \)

Trench Gate Cell

- Source
- Gate
- Drain
- \(R_{\text{Channel}} \)
- \(R_{n-} \)
Advantages of Trench-Gate:

- Vertical channel requires less area compared to the horizontal channel of planar structure
 - Greater cell density
 - Greater channel width/unit area
 - Lower $R_{DS(on)}$

- No R_{JFET} between adjacent cells
 - Greater cell density
 - Lower $R_{DS(on)}$
Major Mitsubishi/Powerex Trench-Gate Milestones:

1983 - Trench capacitor cell proposed for next generation DRAM
1988 - Mass production of trench capacitor memory launched
1992 - Prototype low voltage trench gate MOSFETs developed
1994 - Mass production of trench gate 30V-150V MOSFETs launched
1994 - Prototype 600V Trench IGBT developed
1994 - 400V Strobe Flash IGBT production started
1995 - 250V 400A, 600A Trench gate IGBT module production started
1998 - 1200V Trench IGBT developed
1999 - Production of 600V, 1200V trench gate IGBT modules started
1999 - Production of sub μm trench MOSFETs started
Trench-Gate MOSFET Technology Focus:

- Low voltage types 20V - 150V
- N-channel and P-channel
- Logic level drive 4V and 2.5V
- Low $R_{DS(ON)}$ in small packages
- Low Q_G
- Low $R_{DS(ON)}$ at low driving voltage
- Preserve ESD ruggedness
Low voltage MOSFETs benefit most from trench gate:

<table>
<thead>
<tr>
<th>% of $R_{DS(ON)}$</th>
<th>Typical 60V High Density Planar Gate MOSFET</th>
<th>Typical 500V MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{CH}</td>
<td>30%</td>
<td>10%</td>
</tr>
<tr>
<td>R_{JFET}</td>
<td>20%</td>
<td>5%</td>
</tr>
<tr>
<td>R_{N-}</td>
<td>30%</td>
<td>80%</td>
</tr>
<tr>
<td>Other</td>
<td>20%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Trench technology attacks R_{CH} and R_{JFET}
Trench-Gate MOSFET Chip Structure:

- Source Electrode
- Source Layer
- Polysilicon Gate
- Gate Oxide
- P-base
- n-epi layer
- n+ Drain Electrode

5th Generation stripe trench 1μm design rule
Benchmark TO220 (D²-Pak) Devices:

\(R_{\text{DS(ON)}} \) (mΩ) Maximum, \(V_{\text{GS}}=10V, T_j=25\text{C} \)

<table>
<thead>
<tr>
<th>(V_{\text{DSS}}) n-ch, -(V_{\text{DSS}}) p-ch (Volts)</th>
<th>20V</th>
<th>30V</th>
<th>60V</th>
<th>100V</th>
<th>150V</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-ch</td>
<td>4.0</td>
<td>4.7</td>
<td>12</td>
<td>7.0</td>
<td>19</td>
</tr>
<tr>
<td>p-ch</td>
<td>4.0</td>
<td>4.7</td>
<td>12</td>
<td>7.0</td>
<td>19</td>
</tr>
</tbody>
</table>

More than 500 types available in TO-220, TO-220 Isolated, D²-Pac, D-pac. Standard and logic level (4V, 2.5V) drive. n-channel and p-channel

New - FS100VSJ-02A
Reducing Q_g: For DC to DC converter and synchronous rectification applications:

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>Process</th>
<th>V_{DSS}</th>
<th>Max $R_{DS(on)}$</th>
<th>C_{iss}</th>
<th>Q_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP-8</td>
<td>FY10AAJ-03</td>
<td>Conventional Trench</td>
<td>30V</td>
<td>13.5mΩ</td>
<td>2850pF</td>
<td>32nC</td>
</tr>
<tr>
<td>SOP-8</td>
<td>FY10AAJ-03A</td>
<td>Shallow Trench</td>
<td>30V</td>
<td>13.5mΩ</td>
<td>1800pF</td>
<td>22nC</td>
</tr>
</tbody>
</table>

DC to DC Converter Efficiency

$V_{IN}=15V$, $V_{OUT}=3.3V$, $f=300kHz$

- **FY10AAJ-03A**: 30% Reduction of Gate Charge
Low $R_{DS(ON)}$ in small package:

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>Process</th>
<th>V_{DSS}</th>
<th>Max $R_{DS(on)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP-8</td>
<td>FY7ACH-03A Dual n-channel</td>
<td>5th Generation Shallow Trench</td>
<td>30V</td>
<td>26m\Omega</td>
</tr>
<tr>
<td>TSSOP-8</td>
<td>FY7BCH-02A Dual n-channel</td>
<td>5th Generation Mesh Trench</td>
<td>20V</td>
<td>25m\Omega</td>
</tr>
</tbody>
</table>
Low $R_{DS(ON)}$ at low drive voltage:

<table>
<thead>
<tr>
<th>Package</th>
<th>Configuration</th>
<th>Type Number</th>
<th>Max $R_{DS(ON)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP-8</td>
<td>Single n-channel</td>
<td>FY10AAJ -03A</td>
<td>20mΩ</td>
</tr>
<tr>
<td>SOP-8</td>
<td>Single p-channel</td>
<td>FY8ABJ -03</td>
<td>37mΩ</td>
</tr>
<tr>
<td>SOP-8</td>
<td>Dual n-channel</td>
<td>FY8ACH-02A</td>
<td>36mΩ</td>
</tr>
<tr>
<td>TSSOP-8</td>
<td>Dual n-channel</td>
<td>FY7BCH-02A</td>
<td>37mΩ</td>
</tr>
</tbody>
</table>

Don’t be fooled - Industry standard is to supply maximum $R_{DS(ON)}$ at $V_{GS}=10V$ for logic level (4V drive) devices and $V_{GS}=4V$ for 2.5V drive devices.

Powerex/Mistubishi provides maximum $R_{DS(ON)}$ specified at low drive voltage for all logic level (4V, 2.5V) devices
Preserving ESD ruggedness:

Two methods to reduce $R_{DS(ON)}$ at low drive voltages

1. **Increase channel width/unit chip area** - Trench gate structure is very effective for this approach.

2. **Reduce gate oxide thickness** - This approach degrades V_{GSS} and ESD ruggedness.

![Diagram](image)

ESD Withstanding (Human Body Model)

- **Test Voltage**
 - 4000V
 - 3000V
 - 2000V
 - 1000V

- **Samples**
 - 10
 - 20
 - 30
 - 40

- **Test Results**
 - FY10AAJ-03A (No failures)
 - Competitive Device
More ESD ruggedness:

Adopt an integrated gate protection zener

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>Process</th>
<th>V_{DSS}</th>
<th>Max $R_{DS(on)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSSOP-8</td>
<td>FY6BCH-02E Dual n-channel</td>
<td>5th Generation Mesh Trench</td>
<td>20V</td>
<td>30mΩ</td>
</tr>
<tr>
<td></td>
<td>With integrated G-S zener</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSSOP-8</td>
<td>FY7BCH-02E Dual n-channel</td>
<td>5th Generation Mesh Trench</td>
<td>20V</td>
<td>27mΩ</td>
</tr>
<tr>
<td></td>
<td>With integrated G-S zener</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trench-gate MOSFET future direction:

Next Step - Sub μm design trench

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>Process</th>
<th>V_{DSS}</th>
<th>Max $R_{DS(on)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSSOP-8</td>
<td>FY7BCH-02B</td>
<td>Proprietary</td>
<td>20V</td>
<td>21mΩ</td>
</tr>
<tr>
<td></td>
<td>Dual n-channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSSOP-8</td>
<td>FY8BCH-02</td>
<td>Proprietary</td>
<td>20V</td>
<td>19mΩ</td>
</tr>
<tr>
<td></td>
<td>Dual n-channel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More types under development....
Trench-Gate IGBT Modules
(For High Power Industrial Applications)

Technology Focus:
• Low $V_{CE(sat)}$, Low Losses
• Full Line-Up 600V and 1200V
 50A-600A
• High Reliability
• Reduced EMI/RFI
Advantages of Trench-Gate Structure for IGBT:

- Vertical channel requires less area compared to the horizontal channel of planar structure
 - Greater cell density
 - More uniform current flow through chip
 - Robust Turn-Off Switching Capability

- No R_{JFET} between adjacent cells
 - Greater cell density
 - Lower $V_{CE(SAT)}$
Reducing $V_{CE(sat)}$:

<table>
<thead>
<tr>
<th>Components of $V_{CE(sat)}$</th>
<th>Reduction Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{Channel}$</td>
<td>Adopt trench gate surface structure to increase cell density and channel width per unit area</td>
</tr>
<tr>
<td>R_{JFET}</td>
<td>Eliminate by adopting trench gate structure</td>
</tr>
<tr>
<td>R_{n-}</td>
<td>Utilize optimized PT chip design with local lifetime control to increase on-state carrier concentration</td>
</tr>
</tbody>
</table>
IGBT Structure Comparison:

PT IGBT
- Poly-Si Gate
- n⁻ drift region
- n⁺ buffer layer
- p⁺ anode
- Collector Electrode

NPT IGBT
- Poly-Si Gate
- n⁻ drift region
- Emitter Electrode
Advantages of PT structure:

- n^- layer thickness and resistivity can be optimized for low $V_{CE\text{(sat)}}$ without special thin wafer processing or leakage current stability problems.

- Low $V_{CE\text{(sat)}}$ at elevated junction temperature

- Tail current time is short (due to lifetime control) (~0.3μs versus several μs for NPT)

- Low leakage current at high temperatures (one tenth to one twentieth of thin n^- NPT)
Effect of Local Lifetime Control Using Heavy Ion Irradiation:

• Carrier lifetime in the n+ buffer layer is reduced using local life time control
• Long lifetime is maintained in the n- layer
• Carrier concentration in the n- layer during conduction is increased
• Rn- is reduced

$V_{CE(sat)}$ is Reduced
Maintaining Short Circuit Withstanding:

Adopt RTC (Real Time Control Circuit) to clamp short circuit current
1200V Trench Gate IGBT Performance:

$E_{SW\text{(off)}}$ versus $V_{CE\text{(sat)}}$ Trade-Off

$V_{CE\text{(sat)}}$ (V)

$T_j=125^\circ C$

$I_C=100A$

$E_{SW\text{(off)}}$ (mJ/pulse) $T_j=125^\circ C$, $I_C=100A$, $V_{CC}=600V$
Characteristics of 1200V (F-Series) trench gate IGBT:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>3rd Gen. Planar</th>
<th>Trench</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CE(sat)}$</td>
<td>$T_j=125\degree C$</td>
<td>2.85V</td>
<td>1.9V</td>
</tr>
<tr>
<td>SWSOA</td>
<td>$2X I_{C(rated)}$</td>
<td>Square</td>
<td>Square</td>
</tr>
<tr>
<td>t_{SC}</td>
<td>Short Circuit Withstand Time</td>
<td>$>10\mu s$</td>
<td>$>10\mu s$</td>
</tr>
<tr>
<td>$E_{SW(off)}$</td>
<td>Turn-Off Switching Energy (Normalized)</td>
<td>1.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Characteristics of 600V (F-Series) trench gate IGBT:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>3rd Gen. Planar</th>
<th>Trench</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CE\text{(sat)}}$</td>
<td>$T_j=125$C</td>
<td>2.6V</td>
<td>1.6V</td>
</tr>
<tr>
<td>SWSOA</td>
<td>$2X I_{C(rated)}$</td>
<td>Square</td>
<td>Square</td>
</tr>
<tr>
<td></td>
<td>Current Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{SC}</td>
<td>Short Circuit</td>
<td>$>10\mu s$</td>
<td>$>10\mu s$</td>
</tr>
<tr>
<td></td>
<td>Withstand Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{SW\text{(off)}}$</td>
<td>Turn-Off Switching Energy (Normalized)</td>
<td>1.0</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Next Generation Performance:

1200V F-Series IGBT Module

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Third Generation H-Series</th>
<th>Trench Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CE(sat)} ~ (V) ~ T_j=125C$</td>
<td>2.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Switching Loss - $E_{on}+E_{OFF}$</td>
<td>1.0</td>
<td>0.85</td>
</tr>
<tr>
<td>Total Sinusoidal Output Inverter Loss $f_{PWM}=10KHz$</td>
<td>1.0</td>
<td>0.70</td>
</tr>
<tr>
<td>Thermal Impedance $R_{TH(i-c)}$</td>
<td>1.0</td>
<td>1.45</td>
</tr>
<tr>
<td>Temperature Rise - T_{J-C}</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

30% Reduction of losses!
Evolution of Industrial Power Semiconductor Modules:

Chip Technology
- Darlington Transistor
- High-β
 - G1 IGBT
 - G2 IGBT

Package Technology
- Conventional Al$_2$O$_3$
- Al$_2$O$_3$ DBC
- AlN DBC (Soldered Power Terminals)
- Generation 3 IGBT
- Trench
- U-Package
New Module Package

Conventional Module (H-Series)
- Main Terminal Electrode
- Silicone Gel
- Epoxy Resin
- Molded Case
- Solder Connection
- Cu Base Plate
- Power Chips
- AlN Substrate

New Module (U-Package)
- Main Terminal Electrode
- Silicone Gel
- Cover
- Insert Molded Case
- Al Bond Wires
- Cu Base Plate
- Power Chips
- AlN Substrate
Advantages of the New Module Package:

Low Inductance - Insert molded case allows low inductance electrode designs

Low Capacitance - Substrate geometry optimized for reduced leakage capacitance to the base plate

Improved Reliability - Solder joints between power electrodes and base plate have been eliminated. Low temperature solder used to attach chips and substrate.

Improved Manufacturability - Soldering passes reduced from 2 to 1

Increased Resistance to Bending Stresses - Smaller ceramic substrates and thicker copper base minimize breakage and allow greater mounting torque
New Module Package:

Dual 300A, 1200V Trench-Gate IGBT Module
(CM300DU-24F)
Worlds Most Powerful SOP-8
CY25AAJ -8
400V, 150A
Strobe Flash IGBT

Designed for compact digital cameras

Features:
Trench gate technology
4V gate drive
High current/small package
Low $V_{CE(SAT)}$ 250V IGBT Modules
For forklift and light electric vehicles

Features:
- Low $V_{CE(SAT)}=1.1V$ ($T_j=125^\circ C, I_c=I_{C(RATED)}$)
- High Reliability Packaging
- Robust Switching SOA

<table>
<thead>
<tr>
<th>Type</th>
<th>Circuit</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM600HA-5F</td>
<td>Single</td>
<td>600A</td>
</tr>
<tr>
<td>CM450HA-5F</td>
<td>Single</td>
<td>450A</td>
</tr>
<tr>
<td>CM350DU-5F</td>
<td>Dual</td>
<td>350A</td>
</tr>
<tr>
<td>CM200TU-5F</td>
<td>Six-Pack</td>
<td>200A</td>
</tr>
</tbody>
</table>

New Product
CT60AM-18B

Features:

- Low $V_{CE(SAT)} = 2.0V$ ($T_j=125^C, I_C=I_{C(RATED)}$)
- Low tail loss
- Integrated anti-parallel diode
- TO-3PL (TO264) Outline
Conclusion

Trench-Gate technology is effective for improving the key characteristics of a wide range of power semiconductor devices.

Examples presented:

- Low voltage MOSFETs (especially small package types)
- Industrial IGBT modules (600V and 1200V)
- Special Devices (strobe flash, forklift, resonant mode)